3.13 \(\int \frac{\cos ^2(e+f x) (a+a \sin (e+f x))^{3/2}}{\sqrt{c-c \sin (e+f x)}} \, dx\)

Optimal. Leaf size=45 \[ \frac{\cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{3 a f \sqrt{c-c \sin (e+f x)}} \]

[Out]

(Cos[e + f*x]*(a + a*Sin[e + f*x])^(5/2))/(3*a*f*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.310588, antiderivative size = 45, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.053, Rules used = {2841, 2738} \[ \frac{\cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{3 a f \sqrt{c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[e + f*x]^2*(a + a*Sin[e + f*x])^(3/2))/Sqrt[c - c*Sin[e + f*x]],x]

[Out]

(Cos[e + f*x]*(a + a*Sin[e + f*x])^(5/2))/(3*a*f*Sqrt[c - c*Sin[e + f*x]])

Rule 2841

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rule 2738

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[
(-2*b*Cos[e + f*x]*(c + d*Sin[e + f*x])^n)/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e,
 f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]

Rubi steps

\begin{align*} \int \frac{\cos ^2(e+f x) (a+a \sin (e+f x))^{3/2}}{\sqrt{c-c \sin (e+f x)}} \, dx &=\frac{\int (a+a \sin (e+f x))^{5/2} \sqrt{c-c \sin (e+f x)} \, dx}{a c}\\ &=\frac{\cos (e+f x) (a+a \sin (e+f x))^{5/2}}{3 a f \sqrt{c-c \sin (e+f x)}}\\ \end{align*}

Mathematica [B]  time = 0.546324, size = 111, normalized size = 2.47 \[ \frac{(a (\sin (e+f x)+1))^{3/2} \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right ) (15 \sin (e+f x)-\sin (3 (e+f x))-6 \cos (2 (e+f x)))}{12 f \sqrt{c-c \sin (e+f x)} \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[e + f*x]^2*(a + a*Sin[e + f*x])^(3/2))/Sqrt[c - c*Sin[e + f*x]],x]

[Out]

((Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(a*(1 + Sin[e + f*x]))^(3/2)*(-6*Cos[2*(e + f*x)] + 15*Sin[e + f*x] - S
in[3*(e + f*x)]))/(12*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^3*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Maple [B]  time = 0.212, size = 141, normalized size = 3.1 \begin{align*}{\frac{ \left ( \left ( \cos \left ( fx+e \right ) \right ) ^{2}\sin \left ( fx+e \right ) + \left ( \cos \left ( fx+e \right ) \right ) ^{3}-3\,\sin \left ( fx+e \right ) \cos \left ( fx+e \right ) +2\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}-\sin \left ( fx+e \right ) -4\,\cos \left ( fx+e \right ) +1 \right ) \sin \left ( fx+e \right ) }{3\,f \left ( \sin \left ( fx+e \right ) \cos \left ( fx+e \right ) + \left ( \cos \left ( fx+e \right ) \right ) ^{2}-2\,\sin \left ( fx+e \right ) +\cos \left ( fx+e \right ) -2 \right ) } \left ( a \left ( 1+\sin \left ( fx+e \right ) \right ) \right ) ^{{\frac{3}{2}}}{\frac{1}{\sqrt{-c \left ( -1+\sin \left ( fx+e \right ) \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2),x)

[Out]

1/3/f*(cos(f*x+e)^2*sin(f*x+e)+cos(f*x+e)^3-3*sin(f*x+e)*cos(f*x+e)+2*cos(f*x+e)^2-sin(f*x+e)-4*cos(f*x+e)+1)*
sin(f*x+e)*(a*(1+sin(f*x+e)))^(3/2)/(sin(f*x+e)*cos(f*x+e)+cos(f*x+e)^2-2*sin(f*x+e)+cos(f*x+e)-2)/(-c*(-1+sin
(f*x+e)))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac{3}{2}} \cos \left (f x + e\right )^{2}}{\sqrt{-c \sin \left (f x + e\right ) + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^(3/2)*cos(f*x + e)^2/sqrt(-c*sin(f*x + e) + c), x)

________________________________________________________________________________________

Fricas [A]  time = 1.63408, size = 193, normalized size = 4.29 \begin{align*} -\frac{{\left (3 \, a \cos \left (f x + e\right )^{2} +{\left (a \cos \left (f x + e\right )^{2} - 4 \, a\right )} \sin \left (f x + e\right ) - 3 \, a\right )} \sqrt{a \sin \left (f x + e\right ) + a} \sqrt{-c \sin \left (f x + e\right ) + c}}{3 \, c f \cos \left (f x + e\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

-1/3*(3*a*cos(f*x + e)^2 + (a*cos(f*x + e)^2 - 4*a)*sin(f*x + e) - 3*a)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f
*x + e) + c)/(c*f*cos(f*x + e))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**2*(a+a*sin(f*x+e))**(3/2)/(c-c*sin(f*x+e))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac{3}{2}} \cos \left (f x + e\right )^{2}}{\sqrt{-c \sin \left (f x + e\right ) + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate((a*sin(f*x + e) + a)^(3/2)*cos(f*x + e)^2/sqrt(-c*sin(f*x + e) + c), x)